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Abstract

The study of a quasi-ideal chromatography model at finite concentration
shows the existence of stable discontinuities, resulting either from sorption or
isotherm effects. A set of conditions, illustrated in a diagram, determines the
conditions of stability of these discontinuities. Solution thermodynamics
shows that there exist three possible modes of peak migration. In all cases a
progressive variation of the experimental conditions (pressure or temperature
of the column) allows passage from one of these modes to another. One of
these three possible modes, the double-shock mode, has not been described
previously. Tt is characterized by front and rear stable discontinuities, and its
importance rests on the fact that it corresponds to the minimum band broaden-
ing. This mode is observed for a column temperature which is near the boiling
point of the solute under the average pressure of the carrier gas. The results also
show that the derivation of cquilibrium isotherms from the deformation of the
peaks obtained with large sample sizes is not valid generally.
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INTRODUCTION

In a previous paper we discussed a quasi-ideal chromatography model
which accounts for the migration of bands of large concentration by as-
suming that the mobile and stationary phases are always in equilibrium
at all points of the column and that the pressure gradient remains un-
changed during the elution of a band (7). We have shown that the effects
of a large solute concentration are first order whereas kinetic effects are
second order because the concentration appears in the coefficients of the
first partial derivatives in the mass-balance equation whereas the diffusion
is introduced only with the second partial derivative (/). The solution of
a similar model has been previously discussed by Conder and Purnell (2)
in the special case where the pressure is constant in a column which
corresponds to an infinite column permeability. The use of the method of
characteristics in this last case has allowed us to refine Haarhoff’s theoreti-
cal study, to determine precisely the conditions of stability of the dis-
continuities, to study their interference with the continuous part of the
profile (3, 4), and to calculate concentration profiles during the elution in
the special case of a linear isotherm (5).

Here we will discuss the problems of the stability of the discontinuities
and of the deformation of the peaks as related to nonlinear isotherms,
together with the effect of column temperature and pressure. The pressure
will still be considered as constant, This assumption considerably sim-
plifies the calculations and allows a clearer picture to be presented more
easily. It is, unfortunately, less and less realistic because the developments
in the packing of large columns lead to the use of finer and finer particles
in order to take advantage of the better efficiency available, thus resulting
in large pressure drops which can exceed 1 atm for a 1-meter long column
(6). In another paper we discuss the extension of these results to the case
where the pressure gradient is not negligible (7).

The complete system was derived in a previous paper (I) with the as-
sumption that the pressure profile is unchanged during elution of a band
(1). The equations can be simplified by assuming a constant pressure by
replacing P and F = Pu by 1 and u, respectively. The system thus ob-
tained is summarized in Table 1 (see Symbols).

We shall first recall briefly the results regarding the migration rate of the
continuous profile obtained by integration of Eqs. (1) and (2) and the
velocity of the discontinuities (Eq. 4), which have been established previ-
ously (2-4). Then we shall show how the general, mathematical theory of
the stability of the discontinuities (8) can be applied and combined to the
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TABLE 1

Mathematical Translation of the Quasi-Ideal Model of Gas Chromatography
at Finite Concentration

Constant pressure

F, X continuous F, X discontinuous
Xnrwa-xi=-—wZ 0  v.= y @
ot oz ky ~ k&,

1 +22—1(1-—-X,)
ox ,. éu X=X
,—k == )
z Vi, = U, ©)
1 12 ks — ki _
k_k')'A l+ﬁ(l X))
Ya i +XLdln7A(l —XAL)Z 2 t
dXa 1 o Pa% o« Xa©
kl = ko -—-}’A — I
3) 1 — Xa 6
ky = ko P_A a® __XA_I_E
1—Xa
P=1 Q)
=2 X ®)
Ya = )’A(X A" ®
Boundary conditions:
u(0, 1) = uo (10)
r=0 X0 =0
0<t<T X(0, 1) = Xo(1) (1

t>1  X0,6)=0

known results of solution thermodynamics. The various possibilities of
peak deformation during the elution of bands injected as rectangular zones
will then be discussed.

MIGRATION RATES IN CHROMATOGRAPHY AT
FINITE CONCENTRATIONS

u is the local apparent transport velocity of an inert compound and is
related to the cross-section averaged insterstitial gas velocity (i, = Q/e A,
where Q is the volume flow rate of carrier gas, ¢, is the insterstitial porosity,
and A is the column cross-section area). In steady-state conditions, u is
constant (cf. Eq. 10) and is given by

e’ ¢ (12)

u=uy, =1, Ve
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where V_ is the total volume of the column and V;; the volume available to
the gas phase.

During the elution of a large concentration band, the velocity u is no
longer constant (2) but is given by

X k' dx '
u = ug exp[: j~0 m] (13)

Any peak profile injected in the column will propagate and change
shape in the same time. For this reason it is convenient, but not perfectly
correct, to speak of the migration rate of a mole fraction X or of its ap-
parent transport velocity v. This velocity is, in fact, the velocity associated
to the corresponding characteristic line X = constant (2, 4, 9). v is given by

u
STF R - %) (19

The residence time of a mole fraction X in the column is

L 1+ K1 - X)

tX = -“_o X kl dX (15)
PN T+ (1 = X)

This relationship is valid only if there is no discontinuity for the mole
fraction X, i.e., for the continuous part of the profile. The speed V,, of a
discontinuity is related to the apparent transport velocity corresponding
to the continuous profile, downstream from the discontinuity, v,, by the
equation

v

Vie __ 1+k/(L= X)) 16
vl kz - kl
l + Xz _ Xl (l XZ)

In this equation X, and X, are the mole fractions of the Compound A
in the carrier gas immediately upstream and downstream from the dis-
continuity, respectively, and k, and k, are the corresponding retardation
factors (/) given by Eq. (6) (cf. Table 1).

Equations (13) to (16) allow the determination of the progressive defor-
mation of a band of any initial shape during its elution through the
column. They can be used to solve numerically all problems of propaga-
tion, but they do not lead to a simple study of the effects of various
parameters on the peak deformation and broadening. Such a general study
is much easier if we consider the properties of stability and propagation
of the discontinuities.
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THE STABILITY OF CONCENTRATION
DISCONTINUITIES

Up to now it has been shown that concentration discontinuities exist
and their migration rate has been calculated (Eq. 16). It still remains to

"be determined when and how they are formed and disappear, since

eventually, if the column is long enough, the peak shape will become
Gaussian.

The conditions of stability of a discontinuity result immediately from
its main property: a discontinuity is a surface perpendicular to the column
axis, moving along the column, on which the mole fraction of solute
changes abruptly from a given value X, downstream of the discontinuity,
to another value X, upstream of the discontinuity. The rate of migration
of the discontinuity itself is determined by the properties of the chromato-
graphic system (Eqgs. 4 to 6) and so are the apparent transport velocities of
the mole fractions X,; and X, (Eq. 14), so there are three possibilities.

(1) The migration rate ¥, of the discontinuity is larger than the ap-
parent transport velocity of X, and smaller than the apparent velocity
of X,:

v < Vi, <0, a7n

As v, is smaller than v,, the mole fraction X, tends to outrun the mole
fraction X, thus creating a rolling wave profile; either X, would roll over
X, if X, > X, or dig under it if X, < X,. This is absolutely impossible,
as previously shown (I), and so the discontinuity is stable. Of course, this
does not prevent X; and X, to change progressively as a result of the
interaction between the continnous and discontinuous parts of the profile,
but the discontinuity itself remains stable as long as Condition (17) is
fulfiled. We shall refer to it as a “‘shock,” by obvious analogy to a shock
wave.

(2) The migration rate of the discontinuity is smaller than the apparent
transport velocities of both X, and X,:

Vi, <y and, Vi, < vy (18a)

There is a trend to build up the discontinuity from the rear or upstream
and to destroy it from downstream. Again, the discontinuity is stable if
v; < 3, but we shall consider a stable discontinuity fulfilling Condition
(18) as partly stable.
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TABLE 2
Stability Conditions of Concentration Discontinuities

Viafvi 21 and Vialva <1 stable shocks discontinuities
Vizlvy > 1 and VizJvs = 1} partly stable

Viafo1 <1 and Viafv, <1 discontinuities

Viafvs <1 and Viafva > 1 unstable discontinuities

There is a symmetrical case with
V12 > Uy and V12 > Uy (lgb)

which has similar properties.
(3) The last possibility is

vy >V, >0, (19)

where the discontinuity is not stable. An unstable discontinuity can
either collapse at once or disappear progressively, |X, — X,| decreasing
to zero by continuous changes of both X, and X,, depending on the
chromatographic conditions.

Conditions (17) to (19) can be written with the use of Vy,/v, and
V1a/v, only, ratios which are given by Eq. (16). These conditions are sum-
marized in Table 2.

THE STABILITY DIAGRAM

Conditions such as those given in Eqs. (17) to (19) or in Table 2 define
regions in the X;, X, plane in which shocks can or cannot exist. This
geometrical construction, which illustrates the conditions of stability of
the discontinuities, is their stability diagram. This diagram is very useful
because it will allow us to describe the progressive deformation of a peak
and the appearance and disappearance of the discontinuities.

The diagram is limited to a square since both X, and X, are by defini-
tion smaller than unity. In addition, they should be smaller than

(20)

whenever the column temperature is smaller than the boiling point of
Compound A under the column pressure P. X,, will be the upper limit of
X; and X,

A point on the X,, X, diagram (cf. Fig. 1) represents a discontinuity
between mole fractions X; (downstream) and X, (upstream). This point
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FiG. 1. Stability diagram with one transition point, 7. The column temperature
is slightly lower than the boiling point so the region X; > X, is impossible.
To satisfy Condition 21 (stability of the corresponding discontinuity), a point
above the bisector (X, > X;) should be below C,’; accordingly, images below
the bisector and above C;’ fulfill that condition too. The same is true for
Condition 22 and C,’. Region A corresponds to stable discontinuities at the
front edge of the peak (X, > X,) while Region B corresponds to stable dis-
continuities at the rear part of the peak.

is the image of the discontinuity. If the point is above the bisector, the
discontinuity is on the leading part of the peak (X, > X;); if the point is
below the bisector, the corresponding discontinuity is on the peak tail
(X, < X)). .

The inequalities given in Table 2 define regions of the plane which are
above or below the two curves of the equations

Yooy o Ltk =X) o0
- 2o -
. 1+ P (L= Xy)
2 1
Va_y o L+ kA =X) 4y _y (22)
_ - -
b2 L+ = (= X)
2 1

Equation (22) is derived from Eq. (21) by exchanging X; and X, so the two
curves C, and C, are symmetrical in respect to the bisector. Once these
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curves are drawn, the regions of stability of the discontinuities are deter-
mined from the sign of the left-hand side of Egs. (21) and (22).

A shock can either originate in the shape of the injection band (in the
case of a rectangular injection there are front and a rear discontinuities
initially) or appear some time during elution when Condition (17) is ful-
filled. Such a shock will appear on one side of the peak, usually at a point
where X s 0. The image of the newly appearing discontinuity is on the
bisector. This line is thus a natural border of the stability regions.

It can be shown that both curves C; (Eq. 21) and C, (Eq. 22) can be
decomposed into the bisector and another curve, C,’ or C,’'. Eq. (21), for
example, can be written as

(Xz - X1)f(X1s Xz) =0 (23)

An example of a stability diagram is shown in Fig. 1 for a case where
X,, < 1 and where the curves C, and C, intersect the bisector at one point
T.

The discontinuity is stable if the left-hand side of Eq. (23) is positive.
Consequently, the first condition for the stability of the discontinuities is
that f(X;, X;) > 0 above the bisector (X, > X;) and f(X|, X;) <0
below the bisector. It has been arbitrarily assumed in Fig. 1 that f(X,, X3)
> 0 above the curve C,’. The regions where this condition is not fulfilled
are hatched vertically (Fig. 1). We then proceed in the same way with Eq.
(22) and curve C,’.

The use of such a diagram to describe the progressive deformation of
a peak during its elution is complicated and will be described later, after
the properties of C;’ and C,’ and the significance of the point T are dis-
cussed. To illustrate the possibilities of the method, however, we shall
describe here (cf. Fig. 2) the elution of a band injected as a rectangular
pulse, where the stability diagram (Fig. 2a) is very simple, the curves C,
and C, are limited to the bisector, and the discontinuities are stable for
X, > X, only. The physical conditions leading to such a diagram will be
discussed in the next section.

The rectangular injection pulse has two shocks, A and A’ (Fig. 2b).
These shocks are represented by their images A and A’ on the diagram,
respectively. The front shock (Point A) is not stable in the case selected
since its image is in a hatched area. It will collapse at once and be replaced
by a continuous profile. The shock in A’ is stable; this shock will keep
the same amplitude as long as the plateau is not destroyed, the peak being
transformed into BB’ (Fig. 2c). When the continuous profile begins to
interfere with the shock, its height decreases progressively (profile CC’,
Fig. 2d). The image of that shock moves from A’ toward the origin. The
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b c el

FiG. 2. Propagation of a rectangular injection in the case of a linear isotherm

(Xm > 1, sorption effect). (a) Stability diagram. Stable discontinuities can

be found only at the front of the peak, The corresponding points are above

the bisector. (b) The injection. The two discontinuities are shown by A and A’.

Profiles BB’ and CC’ are observed after migration of the band along the
column.

area of the different profiles are the same (conservation of mass) if care is
taken for the variation of the gas phase velocity.

In diagrams such as the one shown in Fig. 2(a), only one shock can
take place, either at the front or the rear part of the peak profile. In more
complex situations, such as that represented by Fig. 1, two shocks are
possible, one on each side of the profile.

We shall now discuss the various properties of the stability diagram.

Equation of C,’
k' is given by Eq. 3 (Table 1), and k, and &, by Eq. (6). Then Eq. (21)
becomes
(= X)(1 - X5 = (1= X1 — X,

Xt - x,tp° dln
X—Xz,;—:—'ﬁ—?’)’l(l +X1L—ZZY?) =0 (24)
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This equation cannot be solved in X; or X, in the general case, but once
the isotherm (Eq. 9) is given, it is possible to solve it numerically.
In the case of an ideal solution (y, = 1), Eq. (24) becomes:

X; - X’l)(%;‘j - 1) =0 (25)

Then C,’ (and C,’) does not exist and only the bisector is a boundary in
the stability diagram. Three cases are possible.

(1) P,° > P (the column pressure P is usually taken as unity). Then
Condition (17) is fulfilled for X, > X, and discontinuities are stable when
the corresponding point is above the bisector (cf. Fig. 2). The sorption
effect dominates, and shocks appear at the front of the peak.

(2) P,° < P. Then Condition (17) is fulfilled for X, < X,, and dis-
continuities are stable when the corresponding point is below the bisector.
In this case shock can appear only at the rear edge of the peak. The
isotherm effect is dominating.

(3) P,° = P. Then Eq. (24) is always satisfied, and so

vy, =0, =V,

All existing discontinuities are stable, and a rectangular injection will
propagate without deformation.

This result is very important. It shows that at a column temperature
equal to the boiling point of the substance at the column pressure, the
peak broadening will result only from the second-order kinetic terms,
while the effects of a finite concentration will tend to stabilize the injection
profile and will add no contribution of their own to the broadening. A
similar result is obtained with a nonideal solution following Henry’s law
(y = y® = constant). Then Eq. (23) becomes

4]
X, — X1)<%L - 1) =0 (26)
This time the double-shock propagation mode is obtained for yP,° = P.
It again corresponds to conditions in which the peak broadening is
minimum and the peak symmetry maximum. It should be noted, however,
that it is quite improbable that a solution could follow Henry’s law up to
such a large mole fraction.
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Effect of Pressure and Temperature on the Stability Diagram

As shown by Eq. (23) the influence of temperature and pressure on the
boundaries of the stability diagram results from the variation of the
activity coefficient and the vapor pressure. The activity coeflicient varies
only slightly with temperature, and its change in the 20 to 50°C range
around the boiling point of the studied compound will be negligible
compared to that of the vapor pressure except in very unusual cases; for
example, when the retention process is a complexation reaction or when'
very strong polar interactions take place in solution. Then it is probable
that the solution will be very far from ideal and that injection of large
sample with high partial pressures will not be possible.

Practically all the effects of temperature and pressure are described by
the variations of the dimentionless parameter X,, (cf. Eq. 20).

Transition Point

As explained above, when a discontinuity appears on the side of a con-
tinuous profile, its image is on the bisector. The discontinuity cannot
usually appear on either side of the peak. It will appear on the peak tail
if dv/dX < 0, v being the apparent transport velocity of the mole fraction
X (cf. Eq. 14) because then Condition (17) can be satisfied only when
X, > X,. If dv/dX > 0, the discontinuity will appear on the front side,
since Condition (17) can then be fulfilled only if X, < X,. Only if dV/dX
= 0 can the shock appear on either side of the peak. The corresponding
point is a transition point. From Egs. (13) and (14) the coordinates of the
transition points are given by '

, dk’'
2k — (1 —X);,—A;—O 27N
These points are also the intersection between the bisector and the curves
C," and C,’ as can be seen directly by letting X, = X, + dX and expanding
Eq. (21) into powers of dX. This is, of course, because transition points
which correspond to the origin of a shock either at the front or the rear
side of a peak, are on the boundary of two stability regions.

The determination of the transition points is made from Eq. (27) which

can be written as

2-(1- X)-cg—((ln k)=0 28)
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In a previous paper (Ref, 1, Eq. 21) it was shown that

dx,t 1
dy (1 — X,.b7

This equation Ieads to Eq. (3). Combining Egs. (28) and (29) gives

k' = ko'7a” 29

dy \? dy a’y
p— L —— — — — — — L T =
2x,0 - x9(4g2) — = 0|25~ A = X9 ] = 0 GO
The roots of this equation can be calculated if we know the isotherm
equation (Eq. 9) because Eq. (8) may be written as

Y = X/X,, = yX* 31)

Transition Range

This is the range of X,, values in which there is at least one transition
point on the stability diagram. The favorable temperature range is the one
in which it is possible to operate the column so that there is a transition
point on the stability diagram of a given compound. It depends on the
transition range and the pressure range in which it is possible to operate
the column, It is interesting to determine the transition range because then
it is possible to find operating conditions of the column (temperature,
pressure, sample size) which ensure minimum peak broadening. Then
the effect of a large sample concentration, far from contributing to an
increase in peak broadening, will tend to reduce it because of the stabiliz-
ing effect of the shocks, which works against the kinetics sources of peak
broadening,

For an ideal solution the transition range is limited to one value X, = 1.
For all solutions this value belongs to the transition range since Eq. (30)
isvalid for X,, = land X! = Y = 1.

1t is also interesting to determine whether the origin can be a transition
point. The corresponding value of X,, is

Yo+ = 2Y'(0) — Y"(0)
" AY'O)
where Y’ and Y” stand for dY/dX" and d?Y/(dX")?. Values of X,, im-
mediately lower than X,* do not belong to the transition range which is,
in practice, limited to the range {X,,* — 1|. The determination of the sign

of the left-hand side of Eq. (30) and consequently of dv/dX has two
possibilities,

(32)
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(1) IfXx, < X,* dv/dX < 0 around the origin. Only shocks at the rear
side of the peak are possible for low solute concentrations. The isotherm
effect is dominating even at low concentrations. There is no transition
point, the isotherm effect is the most important at all concentrations, and
shocks are only possible at the rear front.

2) IfX,>X,*, dv/dX > 0 around the origin. At low concentrations
only shocks at the front side of the peak are possible, but in most cases
of actual solutions there is a transition point at which dv/dX becomes
negative if X,, < 1. So the sorption effect dominates at low concentrations
with a front shock while the isotherm effect dominates at high concentra-
tions with a rear shock. If X, > 1, there is no transition point and the sorp-
tion effect always dominates.

Operating conditions resulting in X,, = X,,* are called limit transition
conditions. They can be determined directly by plotting the variation of
retention times with sample size at various temperatures (7).

These conditions of X, result in conditions on the column temperature,
which also depends on the column pressure (cf. Eq. 20).

Examples of Propagation

The results of the previous discussion permit a simple qualitative
description of the deformation of large concentration bands through a
chromatographic column.

If there is no transition point, the propagation is very simple as shown
already in Fig. 2 (sorption effect). The propagation in the case of a domi-
nating isotherm effect is shown in Fig. 3. The situation is more complex if
there is a transition point.

Then the apparent transport velocity v of a mole fractlon X first in-
creases with increasing X (sorption effect), goes through a maximum
(transition point), and decreases with a further increase of X (isotherm
effect). Figure 4 shows such a stability diagram (Fig. 4a) and the profile
corresponding to various steps in the propagation of a rectangular injec-
tion (Fig. 4b to 4h). These profiles can be determined either by computer
calculation using Eqs. (13) to (16), or by a graphic method when the
velocity profile v(X) is known, The area of the profile is not constant be-
cause the local fluid velocity changes with X (cf. Eq. 13), and only [$Xu dt
is constant. The arrows give the direction of movement of the shocks in
their displacement relative to the mass center of the band. Consequently,
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b C d

FiG. 3. Propagation of a rectangular injection in the case of a linear isotherm

(X < 1, isotherm effect). (@) Stability diagram. A shock can exist.only on the

back side of the peak. (b) Injection profile. (¢) and (d) Profiles obtained after
migration along the column.

the construction of the shock suggested by De Vault (1), which is exact
in liquid chromatography, is incorrect in gas chromatography.

The rectangular injection (Fig. 4b) introduces two shocks, a front one
(A) and a rear one (A’). The corresponding points on Fig. 4(a) show that
the second one is stable, but not the first one. Only the shock represented
by Point B (Fig. 4a) can be stable at the front of a peak, so the injection
profile is rapidly transformed into the profile shown in Fig. 4(c): the front
and rear shocks are represented by Points B and A’ (Fig. 4a), and a con-
tinuous profile appears on the front side above Shock B. The distance be-
tween the two shocks, each of which is traveling at constant speed, increases
progressively until the plateau disappears. Then the height of the rear
shock begins to decrease progressively, the corresponding point moving
from A’ to C'. The corresponding shock accelerates while it decreases,
but its speed remains smaller than that of the front shock. The band
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FiG. 4. Propagation of a rectangular injection in the case of a complex stability
diagram. (@) Stability diagram. (b) to (f) Profiles corresponding to various
steps in the elution (see text).

broadens (Fig. 4d). When the rear shock image comes to C', this shock
becomes a partly stable discontinuity (cf. Eq. 18). Its trajectory is given as
Line G on Fig. 4(a). Its speed increases, but a tail with a continuous
profile appears at its base behind it (cf. Fig. 4e). The image of the front
shock remains in B. Usually the Line G intersects C,’ in D', which is the
image of a stable shock. This shock is faster than the front shock which
always has its image in B (Fig. 4f). The tail behind the rear shock increases
while the distance between the two shocks decreases progressively until
they meet. Their images remain in B and B’ all this time (Fig. 4g). The
rear shock then disappears suddenly while the image of the front shock



14:18 25 January 2011

Downl oaded At:

286 VALENTIN AND GUIOCHON

goes from B to D (Fig. 4a). Then only the front shock is stable and its
height decreases progressively as the peak moves further along the column
(Fig. 4h).

It should be pointed out that Figs. 4(b) to 4(/) are band profiles inside
the column. Chromatograms usually are the variation of solute concentra-
tion in the gas phase at the column outlet and have the opposite shape,

The second-order sources of peak broadening (mass-transfer kinetics and
diffusion) hide some of these effects by relaxing the infinite concentration
gradients which correspond to the shocks. For example, the shock crash
pictured in Fig. 4(g) cannot be observed experimentally, and many of the
phenomena described here have not been previously described in gas-
liquid chromatography.

CONCLUSION

In gas-liquid chromatography the sorption and isotherm effects operate
in opposite directions; sorption effects tend to give peaks with sharp
fronts, and isotherm effects lead to peaks with sharp tails. The relative
importance of these opposite trends and the final form of the elution band
depend on the isotherm and on the temperature. The temperature largely
determines whether the sorption or the isotherm effect will dominate. &’
decreases exponentially with increasing temperature, while X,, increases
exponentially, On the other hand, the sorption effect is practically in-
dependent of the temperature and will eventually dominate when the
temperature is high enough.

At temperatures around the boiling point under the column pressure,
two shocks at the front and back side of the peak are possible. This
elution mode, which has not yet been described, is very important because
it corresponds to optimum conditions in preparative scale gas chromato-
graphy (6).

The results of this work cast considerable doubt on the validity of meth-
ods for the determination of solubility isotherms which use the peak pro-
files. As shown by the example discussed by Fig. 4, the elution of a peak
in the transition range can be very complicated, and it is not possible to
derive the parameters of the isotherm from the chromatogram obtained by
frontal analysis or by the elution of a large sample by a numerical calcula-
tion of the signal propagation and optimization of these parameters to
give the best fit to the experimental results. If one shock is stable during the
elution of the band, the opposite side of the band profile could be used.
If there are two shocks, only the continuous part of the profile between
the two shocks can be used. The tail of the peaks in Figs. 4(g) and 4(h)



14:18 25 January 2011

Downl oaded At:

GAS CHROMATOGRAPHY. il 287

cannot be used because it results from the degradation of a shock. This
selection of the right parts of the profile to use is made all the more difficult
by the effects of diffusion and kinetics which dampen the shocks.

Finally, these results should be corrected to take into account the effect
of the pressure gradient. As soon as the pressure drop is no longer negligi-
ble, there is a local stability diagram which changes progressively along
the column. This problem will be discussed in a later paper where it will
be shown that if the effect of the pressure gradient is quantitatively of
great import, the qualitative and descriptive results discussed above remain
fully valid (7).

SYMBOLS

F  mass flow velocity of the mobile phase (Pu) in moles/sec
k'  column capacity factor (én’/on®)
ko' column capacity factor at infinite dilution (zero sample size)
k' ks, column capacity factors downstream and upstream of a discon-
tinuity
k  retardation factor (k = Xn%/n%)
ki, k, retardation factors downstream and upstream of a discontinuity
L column length
nt, n¢ number of moles of solute in the liquid phase and gas phase at
equilibrium
P column pressure
P°  vapor pressure of the solute studied
t time '
ty  residence time of the mole fraction X
u local apparent transport velocity of an inert compound
Ug carrier gas flow velocity at column inlet
a, cross section averaged interstitial gas velocity
V  volume
V.,  geometrical volume of the column
Ve volume available to the gas phase
v apparent transport velocity of the mole fraction X
Uy, Uy apparent transport velocities of solute downstream and up-
stream of a discontinuity
V12 velocity of a discontinuity
X mole fraction in the gas phase
X, X, mole fractions in the gas phase downstream and upstream of
a discontinuity
X maximum mole fraction of compound in the gas phase (P°/P)
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X,.* limit transition mole fraction

XL mole fraction of solute in the solution

Y  activity of solute ‘
Y,v” first and second derivative of activity by respect to X~

z  abscissa along the column
g, interstitial porosity of the packing
¥y activity coefficient in solution

p® activity coefficient at infinite dilution
T  injection time width

Subscript

1 Refers to the gas phase downstream of a discontinuity
2 Refers to the gas phase upstream of a discontinuity
12 Refers to the discontinuity
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